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UNLIMITED SIMULTANEQUS DISCRIMINATION INTERVALS IN REGRESSION

by

G. J. Lieberman, R. G. Miller, Jr., and M. A. Hamilton

I. Introduction

In a recent paper [2] Lieberman and Miller considered the problem
of obtaining simultaneous tolerance intervals in regression. Such inter-
vals are easily described for the simple linear regression model E(Y) =
o + Bx. Tolerance intervals [Lx(P), Ux(P)] were found which are based
upon the same estimated linear regression and which have the property
that with confidence 1-0 the interval [Lx(P)’ Ux(P)] contains 100P
percent of the normal distribution centered at «a + Bx for any x and
.any P. In terms of predictions, a futire value of Y at level x of
the independent variable will lie in [Lx(P), U x(P)] with probability
at least P with confidence 1-0 for any x and any P. The proper
interpretation of this probability statement is that the "confidence
10" refers to the sample from which the regression line is estimated
and the "probability at least P" +to the sampling distribution of future
observations. If for a single regression line one asserts that the pro-
portion of future observations falling within the given tolerance limits
(for any x) is at least F, and similar statements are made repeatedly
for different regression lines, then for 100(l<x) percent of the dif-
ferent regression lines the statements will be correct.

Simultaneous tolerance intervals have a different interpretation
than that given for prediction intervals. Lieberman[l] treated the

problem of determining the joint prediction intervals for the futire
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values of Y at each of K(known) separate settings of the independent
variable x, when all K predictions are hased upon the original fitted
regression line. A probability statement concerning this Joint pre-
diction interval containing the K future values of Y was given.

An experimenter is sometimes interested in Joint prediction inter-
vals, and sometimes interested in simultaneous tolerance intervals.
When the number K or prediction intervals is large, the resultant
intervals may be useless. In other cases, the number K may be un-
known so that the prediction intervals may not be applicable. For these
cases, as well as those situations when the experimenter actually wants
a tolerance interval instead of a prediction interval, simultaneous
tolerance intervals may be useful.

Both prediction intervals and simultaneous tolerance intervals,
pertain to statements concerning future values of Y's for given x's.
The reverse problem of making statements about the x's from which the.
observed future Y's were obtained is often referred to as the problem
of discrimination. The discrimination problem is described as follows:
The statistician has n pairs of values (xl, Yl)(xE’ Yé),...,(xn, Yn)
from which he estimates the regression line « + 8x. He now observes
K additional observations Y{, Y;,...,YE for which the corresponding
independent variable values x{, x;,...,xE are unknown. The statis«
tician wishes to estimate these values of x and bracket them by means
of simultaneous confidence intervals. This problen was first treated
by Mandel [4], and another solution was given in Miller [5).

The analogous situation arises for discrimination problems that
motivated the construction of simultaneous tolerance iptervals instead

of Joint prediction intervels. Again, from the sample data, a regression
2
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line & + bx may be constructed, but the number K of discriminations
to be made from it may be unknown. Even when K 1s known, it may be
80 large that the resultant intervals may be too wide. This problem will ;

be referred to as finding unlimited simultaneous discrimination inter-

vals in regression.

Unlimited similtenecus discrimination intervals [Dy.d), Dyx(P)]
are sought which are based upon the same estimated linear regression
and wvhich have the property that at least 100P percent of the discrimi-
nation intervals will contain the true x's with confidence 1-@. Thus
if for a single regression line one asserts that at least 100P percent
of the disc;}mination intervals will contain the correct x's, and
similar statements are made repeatedly for different regression lines,
then for 100(1-x) percent of the different regression lines the state-
ments will be correct. For the other fraction (1000 percent) the per-
centage of discrimination intervals enclosing their true x's may be
greater or less than 100P percent for each line.

The use of unlimited simultaneous discrimination intervals is par-

ticularly important in bioassay where a standard curve is constructed on

which all future assays (discriminations) are to be run. This is simi-
lar to the problem of calibrating a measuring instrument where the esti-
mated calibration line is used to correct future readings taken with the
instrument. The calibration problem frequently arises in the physical
sciences and engineering.

An example of & bioassay to which unlimited simultaneous discrimi-

nation techniques could be applied is an assay for immunoglobulins in

humen sera. Human serum contains three known antibodies (gamma globulins):




Tpr Y and v These are routinely assayed in a number of labora-

tories by the method of radial immunodiffusion.

A redial immunodiffusion assay is performed as follows. An agar
plate is prepared with a gel surface containing antiserum to the immuno-
globulin to be assayed. Holes or wells are punched into the agar gel.
Each plate will have a convenient number of symmetrically placed wells
(for example, 6, 12, or 18). A fixed amount of human serum is then
pipetted into a well. The antigen in the serum diffuses out from the
well and reacts (precipitates) with the antibody in the antiserum gel.

A visible precipitate ring is formed about the well. Each well will
produce one assay. This is illustrated in Fig. 1 for four assays on a

plate with six holes.

Figure 1

The higher the concentration of the immunoglobulin in the serum the
larger the precipitate ring will be. Thus the size of the precipitate
ring is a function éf the immunoglobulin concentration (and random error).

The size of the ring is customarily measured in oﬁe of two ways.

The simplest measure is the average of the horizontal and vertical‘.
diameters (see Fig. 1). This'is the measure we will use, and it is

abbreviated by RSD (for rirg size diameter). Usﬁally this 1is quite

b
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satisfactory because only in rare instances will be precipitate rings
look noncircular. An alternative method of measuring the ring size is
to magnify and silhouette the ring on a piece of paper by means of a
light; cut out the silhouetted ring on the paper, and weigh the paper.
This method takes much longer and also suffers from inaccuracies.

The standard curve for the biocassay can be constructed from puri-
fied immunoglobulin whose concentration has been accurately determined
by other means (microkjeldahl analysis and spectrophotomerry, for
example). Various dilutions of the purified immunoglobulin are assayed
on agar plates to find what RSD each dilution gives. From the known
concentrations of the dilutions and the resulting RSD's the standard
curve can be fitted.

The standard curve of RSD vé. concentration can have various shapes
depending on the immunoglobulin, the time allotted for the precipitationm,
etc. In most cases & reasonable linear fit cen he obtained over a wide
range of concentrations (or RSD's) in either the original scale or in
log scales. In the numerical example to be presented later in Section 4
the assay curve for 7G is linear (over a large range) for RSD vs. log
concentration. Some investigators have found the concentration 4o be
linear vs. the area of the precipitate ring (see [3]). From the statis-
tical point of view the analysis is simplest when a scale for RSD or
concentration or both can be found for which the relationship is linear
(and normality and homoscedasticity are achieved).

Radial immunodiffusion can be applied to other proteins (for example,
serum albumin) besides immmoglobulins. Mancini, Carbonara, and Heremans
[3] give a much fuller discussion of the use of this assay than the brief

discription here.
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Currently at Stanford this assay is being used to study ihe everage
levels and variability of the three immunoglobulins in normal, healthy
subjects., Once the "normal." levels have been established, this asssay
and unlimited simultuneous discrimination intervals can be used to pick
out "abnormal" subjects. Unlimited simultaneous discrimination iutervale
can give the clinician an idea of the accuracy and stability of the
assayed immunoglobulin ‘levels in patients.

In this paper two techniques for obtaining unlimited simultaneous
discrimination intervals will be given. Section 2 presents a procedure
wvhich is obtained through the Bonferroni inequality and is bdriefly des-
cribed in Miller [5]. Section 3 presents an alternative method based
upon an idea presented in the Liebeiman-Miller [2] paper and which uses
critical points tabled in that papcr. Both methods lezd to unlimited
simultaneous discrimination intervels with the property that at least
100P percent of the discrimination intervals will contei: the true x's
with confidence at least 1-&. Section I contains a numcrical example
of the biocassay described earliar. Section 5 presents s discussion and
comparison of the two methods for finding unlimited sinpaltaneous dis-
crimination intervala.

Throughout this paper it will be assumed thai

(1) Yi-a+ax1+ei, 1-1,...,0,
Where the e, are indepandent N(0,o°). The pairs (x,,Y,) are the
original observations on the regression line. We will use the following

customary estimators of «, B, 02:

a.‘.Y‘b;’




Z;(x -X)
-
a2

n
1l 2
a-s -—_-a-z a-bxi)

(2)

The distribution theory of a,b,32 is so well-known tha. there is no
need to summarize it here.

Future observations on the dependent variable will be 3esignated
by a superscript *, that is, Y*. Let Wyw denote the true mear
value associated with. Y*, and x* the value of the independent vari-
able connected with My (1.e., Wt = O+ BX *). For a future cbser-
vation Y* the customary estimator of the value x* is X* = (Y*-a)/b.
This paper 1is concerned with constructing upper and lower limits for

each x* no matter how many future Y* are observed.

IJI. 3Sonferroni Intervals

The simple Bonferromi inequality says
(3) P(A N B) >1 -PA°) - P .

Thirs inequality is useful in combining two confiillence statements for if

A is one statement with confidence 1-(o/2) and B is another with confidence

14{/2), then both statements ¥old with ¢onfidence at least 1-{o/d-(/2) = 1.
The idea behind the Bonferroni intervals ies to combine (for a given

Y') the confidence interval on iyu ‘vith the confidence band on the

line u = + px. If the standard deviation ¢ were known, then each

interval

N
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(k) Y* + N(P)o ,

where N(P) 1is defined by

(5) po L [P P,
S —— e 3
V2x J-N(P) d

would have probability P of containing the true- Hye For each u in
the interval (4), the Working-Hotelling confidence band on the line

M =0+ Px gives a confidence interval for the corresponding x = (p-)/B.
The union of all these confidence intervals as u varies over the in-
terval (4) would give a discrimination interval for x¥.

But ¢ 1is not known. However, if it can be bounded above with
known confidence, then this bound can be inserted in (4) to produce
intervals which have probability at least P of containing their true
“Y*'s' The Bonferroni inequality is used to combine the confidence in
the bound on ¢ with the confidence on the band about the line u=0+fx.

This procedure is illustrated in Fig. 2. The interval in the brace
on the y-axis is the confidenc. interval for by s the interval in the
brace on the x-axis is the discrimination interval. If by is con-
tained in the interval Y* + A, and if the Working-Hotelling confidence
band contains the line u = a + Bx, then the point (x*, a + ﬁx*) must
lie in the & .ded region and x* must lie in the 1ndicated (discrimi-

nation) interval.



Figure 2

Mathematically the discrimination intervals are constructed as

follows. The Working-Hotelling confidence band on the regression linc

=0+ pBx is

(5) Q + Bxea + bx + éyg/a )‘l‘ “"’” 1

{:(x -x;

for all x. The critical point .Fg/ i 2 is the upper a/2 percen-ile
‘ 1

point of the F distribution with degrees of freedom 2,n-2. With
probebility 1-(a/2) the band (6; contains the true regression line

The unknown standard deviation ¢ can be bounded above by

e T e Ly




a/2 Xi_g is the lower /2 percentile point of the X° aistri-

bution with n-2 degrees of freedom. With probability 1-(a/2) the

where

inequality (6) holds true.

By the Bonferroni inequality (3), the probability (with respect to
(xl,Yl),...,(xn,Yn)) that both (6) and (7) hold is at least 1.

For a future observation Y* the 100P percent confidence interval
on its true mean u. is Y* + N(P)o. As the number of future obser-
Qﬁtions tends to infinity the proportion of intervals which correctly
contain their true means converges to P by the law of large numbers.
But the interval Y* + N(P)g is contained in the interval
(8) Y+ N(P) |5 2“'2 L

xn-2

(with probability 1-(a/2)). Thus, the {limiting) proportion of inter-
vals (8) which correctly contain their true means is at least P (with
probability 1-(a/2)).

The discrimination interval is obtained by intersecting the inter-
val (8) on the y-axis with the confidence band on « + Bx, and project-
ing the intersection onto the x-axis. This is illustrated in Fig. 2.
Actually, Fig. 2 represents the nice case. The discrimination "interval"
can be the entire real line or the union of two semi-infinite intervals.
These pathological cases will occur when the regression line is too flat
(i.e., when b 1is too near zero relative to its variability). These
cases are directly analogous to what can happen for a single discrimi-
nation where this pathology is referred to as the Fieller-Creasy paradox.

The reader can visualize when these pathological cases occur by redrawing

10




Fig. 2 with a much flatter slope and shifting the Hy# interval up and
down. The necessary and sufficient condition for the discrimination

"interval” to be a nice finite intervael is
2 2,n2 8
(9) > =22,

Only the nice case will be considered in this paper.

Let [Dyx(P), Dyx(P)] = [Byx(P), Byx(P)] be the discrimination

interval (B for Bonferroni). If the sample regression line has positive

slope, the upper encpoint B_yx(P) 1is the root of the equation
T*

a + bx* - (21’“{ i _2) (i Zox )

(10) ; (x =

=Y+ N(P)(ya—l})—(é—
n-2

and _IiY*(P) is the root of the equation

a + bx* +(2p°‘/2_2)% 1, _L_:)_a_ H

n
- ;(x x
- % n-2 '&
=Y . N(P)(Ea'?') s .
n-2
These roots are:
(12) N ¢ Rﬁf(r.y*q) + Gy D2/m o) ?
BY“(P) - X +
'b -R
and
(1) ) - aiue-r*ma ({(x B/ om0t
Byw(P) = x - ' YRR

il

e e e

’




where
R = @ 5 )/ 0 B
a = N(p) [(n-2)/¥%C 1t

If the sample regression line has negative slope, then fY*(P) is
the root of the equation (11) and ]_B_Y*(P) is the root of the equation

(10).

IIT. !_\u_gmented F Intervals

The intervals in the preceding section were derived from the joint

probability statement

2 1
1 . 4
P[a+sxea+bx+(2}§‘gae§s;];-+—£‘—--’a——§a for all x,
i

E

n-2
ad o <\o2 2 5} 2 1-a ,

(14)

vhose validity stemmed from the Bonferroni inequality. In this section
a similar joint probability statement will be obtained from a different
approach.

In [2] Lieberman and Miller proved that
P{|(a-a) + (v-)x + N(P)q|

(15) < c*s % }f—(-l—i + Na(P) for all x, P)
X -x

=] -,
vhere the critical woint c¢¥* is defined vy

12




Zl + zg + 1 2
(16) P < (c*) ) =1-q.
Xn_z/(n-2)
The random variables Z,,%Z, are independent N(0,1), and Xi_a is a

X2 variable with n-2 degrees of freedom which is independent of Zl

and Z2 For want of a name the statistic

Ze+z§+l

1

(17) 12
X .o/ (n-2)

will be referred to as the augmented F statistic. Tables of c¢* for
a= .5 .3, .1, .05, .01, .001; n-2 = 1(1) 30(5) 50(10).100 are given
in [2].

By taking N(P) = O for the first inequality, and letting N(P) -

+ » for the second inequality, the expression (15) implies that

2
P(|(a~=a) + (b-p)x| < c* s -]-'-+-£3-°'—;‘-)-—2- t for all x ,
(18) i § ¥ )

and a_<_c*s)_>_1-a.

The probability in (18) is actually greater than l=y because not all
combinations of x and N(P) are utilized inside the probability sign.

Thus, the confidence band

2
(19) a+pxea+dx+cts %-0- XX : for all x ,
and the bound
(20) R . sLets,

hold simultanecusly with probebility st least l-o.
| 13
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The construction of the discrimination intervals now proceeds
exactly as in the preceding section with (19) replacing (6) and (20) re-
placing (7). The discrimination "intervals" will all be nice finite
intervals if and only if

(21) b2 > (_c*)_e.s_z_
‘ % (xi-;c')2

Only the nice case will be considered in this paper.

Let [Dyx(P),Dyx(P)] = [Cyx(P),Cix(P)] be the discrimination in-
terval (C for the method based upon c*). If the sample regression

line has positive slope, the upper endpoint C.»(P) 1is the root of the
Y*

equation
2
a+bx*-c*s }.+—(—&@—-%
n 2
; (x, -x)
(22) :

=Y+ NP) ¢* s,

¥

and ;gy*(P) is the root of the equation

(x*-x 213

{: (xi-i)z

a+bx*+c*e|t+
n

(23)
=Y -NP) ¢*s .

These roots are

@) _ b(osr*T) + BB+ Flx, D 2/n) (12 8) 1B
CY*(P) = X + —>
and b -E
(25) 3 2 2/ 112 oy
_ B0-rMD) - B0 + Glx,-D¥/n)(:7-8))
g,rﬁ(P) =X - -5
. g .

L




where
E = (c*2 32)/§(x1-§)2
D= N(P) c* s .
If the sample regression line has negative slope, then EY*(P) is

the root of the equation (23) and _C_'Y*(P) is the root of the equation

(22).

IV. Numerical Exampl._e_

A biassay of the gamma globulin 7; vas performed at the Stanford
University Medical Center using the method of radial immunodiffusion
described in section I. The ring size diameter (RSD) was measured on
two wells for each of seven known concentrations of g The resulting

data are given in Table 1.

Table 1
y®.8.0)0Y  a(ng gy x(10g 12)
68 ,68 1383.6 3.1410
62 ,62 696.8 2.8431
62.5,62.5 716.9 2.8555
55:5,55.5 328.3 2.5163
56 ,56 335.0 2.5250
W8 ,49 147.4 2.1685
48 ,u8 140.7 2.1483

X = 2.5997; ¥ = 57.2143; a = 4.8790; Db = 20.1300;
2569 B (x,D)? = 1638
8= 025 9, ) X, =X = 1. 3
15 i ’

» .
e -

= Bach of the fourteen measurements Of the y's is the average of the
Horizéntal #nd vertical dlsmeters. -

15
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The usual test of linearity shows that a simple linear regression
of RSD on log concentration fits the data quite well. The graph of
Fip. 3 presents the above data and the associated estimated regression
line § = a + bX.

At each of three hypothetical future values of Y*, 57.20, 7O, and
80, unlimited simultaneous discrimination intervals for the associated

*

x* values have been computed at o = .01, .05 and P = .30, .80 using

the Bonferroni and augmented F methods (equations (12), (13) and (24),

(25)).

The results of these computations are presented in Table 2.

Table 2

a | P |Y*(RSD) |Byx(P),Eyn(PYByx(P) -Byx(PYCyn(P) ,Cyn(P)| Cyn(P) -Cy(P)
01| .30 57.20 | 2.582,2.617 .035 2.566,2.633 067
70 3.203,3.269 .066 3.188,3.285 .097
80 3.682,3.786 .104 3.667,3.801 134
80| 57.20 | 2.575,2.624 .049 2.520,2.679 .159
70 3.196,3.277 .081 3.144,3.333 .189
80 3.675,3.794 119 3.623,3.849 .226
.05] .30 | 57.20 | 2.585,2.614 .029 2.574,2.625 .051
70 3.209,3.262 .053 3.199,3.273 0Tk
80 3.692,3.77T4 .082 3.682,3.785 .103
.80 | 57.20 | 2.577,2.622 .0l5 2.538,2.660 .122
70 3.210,3.271 .069 3.164,3.310 146
80 3.684,3.783 .099 3.6u48,3.821 173

The

Y* value 57.20 is equal to a+bx. Therefore, for fixed ¢
a.nd P, fhe 1n£emi.s for ﬁhe corresponding x* have lengths shorter
than 1n£ervals corresponding to any other ﬁlm of Y*

Because of the symmetry of this problem about the point Y* = a+bx,

an interval for x* corresponding to y* = 4i.4O would ﬁg§0 the same

16




length as the interval for x* corresponding to y* = 70. The eame
relationship exists for intervals on x*'s corresponding to Y* values
of 34.40 and 80. It 1s implicit here that a Y* value as large as 80
(or as small as 34.40) is within the vange of linearity.

This example indicates that both methods can be of practical im-
portance. The lengths of the intervals are short enough to be useful
for picking out subjects who have "abnormal" concentrations of 7q (see
section I). It is also evident that for this example the Bonferunni
intervals are shcrter than the intervals obtained using the augmented

F procedure.

V. Comparisons and Discussion

The equations for the Bonferroni intervals (Sec.2).and. the augmented F
intervals (Section 3) are not related in a way that enables one to com-
pletely define conditions under which one method always produces shorter
intervals than the others. Of course, th: interval lengths can always
be compared for given data. . In addition, the interval lengths for
the two methods are amenable to comparison when the Y* values are close
to the number a+bx or when the Y* values are far from a+bx. These
two situations are discussed below.

The comparison for the former situation is stated in terms of the
2

statistic —i—z— = f, say. Distribution theory for f is vell-
knowng in fact, f has an F distribution with 1 and n-2 degrees of
freedom under the hypothesis that B = 0 and a non-cenira)l F-distribu-

tion when B £ O. Hence, it can be said thet if f 1i: yui‘e large,

.then . b . is highly significantly dif.erent from zero, and conversely.

17




Notice that f 1is greater than 213‘;/ 2 5 and f 1is greater than
,n-

*2 if and only if all Bonferroni and augmented F intervals are of

c
finite length (see equations 9 and 21). To avoid infinite-length inter-
vals, let f> er-‘g{ 2, end £>c* for the discussion below.

Suppose Y* 1is so close to a+bx that Y¥-(a+bx) wmakes a negli-
gible contribution to the computations of BY*(P) and CY*(P). Then,
(26)

EY*(P) - Cyx(P) < §Y*(P) - Byx(P) if and only if

n(g) = ¢ - 2r°‘/§_2

(n-2)2rd/2
u(p)(%) () - (2r2 )2eend? )

< (f- *2 -2 = (f).
) N(P) *n)? + [P(p) ** - 4 Fr? ¢

By comparing tabled values of ¢* and Fo/2 n.p? One finds that
* < 2rg{§_2 at o= .001,.01,.05,.10, and .30, and n = 3,7,12,32,
62, and 102. It is reasonable to state without formal proof that at
least for 3<n <102 and .00l << .30, ¢ *? < 2F°/2 . Since

g(£) >0 for £>c¢* and h(f) =0 at f-er"/"’ then h(f) <

ne2?
g(f) and Tpx(P) - Cyx(P) < Epn(P) - Byu(P), when apg{ 2,511,

where f, 1s the point at which the curves h(f) and g(f) first
cross above 21"2’/2 o} more explicitly, where 1’0 is the infimum of f
4 .

values greater than 2% i o such thet g() < n(e).

Some representative values of fo for various levels of ¢, P,
and n are given in Table 3. These values were found using an iterative
procedure,

After computing f, for the desired o eand P levels, ohbe can
find P(Z?da_a <£<? ) for seversl values of p. This information

18
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€66 -

62 -

y(R.S.0)

a8 SR N N R
2.0 ?2 24 2.6 2.8 30 32

x{log DOSE ) —

Pigure 3. A simple linear regression estimate bes:d on measurements
of ring size diameter ocu two wells at each of 7 voncentrations of

gamma glodulin (mg. § of 75) using a radial immmodiffusica assay.
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can be used by the statistician who must recommend an unlimited simul-
taneous discrimination interval method to his client before the data

are observed. For example, if the probabilities are large, the statis-
tician can recommend the use of the augmented F method knowing that it
will produce shorter intervals than the Bonferroni method for Y* values

near a+bx most of the time.

Table 3
2 #2

.10 .50,.80,.90 11.6 10.3 14,2

7 .30 .50,.80,.90 5.7 4.8 8.4
15 .001 .50,.80,.90 29.0 27.6 30.1
15 .10 .50,.80,.90 7.6 7.0 8.4
15 .30 .50, .80,.90 L. 4 3.9 5.4
102 .001 .50, .80,.90 16.4 16.0 16.6
102 .10 .50,.80,.90 6.2 5.7 6.5

0

it is not necessarily true that f > f, implies that EY*(P) -Cyx(P) >

gY*(P)-QY*(P). This is because the curves h(f) and g(f) may cross

Although 2Fg{§_2 <f <f, implies that E&*(P)-QY*(P)<:ﬁf*(P)-gy*(P),

more than once. It can be shown that if f is very large and N(P) /n
is large enough then h(f) > g(f) and fy*(P) -QY*(P) < EY*(P)-QY*(P).

A "large enough" value for N(P) \/E is not a very restrictive condition;
e.g., N(P) must be greater than .08 if g = .10, n = 102, N(P) must
be greater than 1.06 if @ = .00l, n = 12. Thus it is generally true
if b is highly significantly different from zero and if Y* is not

far from a+bx, then the Bonferroni method will produce shorter inter-

vals than the augmented F method.
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For the example of section 4, f = 10,068 indicating that b 1is
highly significantly different from zero. It is not surprising, there-
fore, that every Bonferroni interval in Table 1 is shorter than the cor-
responding augmented F interval.

Now consider the situation where the Y* values are such that

2 2
s 2 s . 4
|Y* - (a+bx)| 1s so large that ?(f-ng{n_e), Tl-(f-c ), (P)[°72X_] 8,
n-2
N(P) ¢*s are negligible in comparison. Then EY*(P)'EY*(P) is approxi-

mately equal to
A 2
2b —?Jf-.“—‘g IY* - (a+bX) |

and EY*(P) '-C-Y*(P) is approximately equal to

2b\~/;—ef: |Y* - (a+bx)]| .

Therefore, CY*(P) 'CY*(P) < BY*(P) BY*(P) if and only if c¢¥* %< 2170/2

As indicated earlier, 2Fg{i 2 > c’*a for 3<n <102 and .001 << .30.
Consequently, for Y* values far from a+b3':', it is generally true that
the augmented F method provides shorter intervals than does the Bon-
ferroni method.

For the immunodiffusion data discussed in Section 4,

B,x(.80) -Byu(.80) = 023486 + 0015828 ([(Y*-(a+bi) + .23615)

+ WT.01578 + [(.23615-Y* + (asb))? + 47.4151%)
and

Cype(.80) -Cyw(.80) = .10088 + 0015263 ([(1.01440 + Y* - (a+bX))?

+ 470087 + (1000 - ¥* + (a428)? + k7,087,
if P= .80, a= .05. Hence, EY*( 80)-cY..( 80)<ny,( 80)-ny.( .80)

21




if and only if |Y*-(a+bX)| > 686. Since Y* cannot be negative, the
augmented F 1intervals will be shorter than the Bonferroni intervals if
and only if the Y* values are greater than Thl.

Obviously, an RSD value of T4l or larger will never be observed and
one concludes that, if P = .80 and q = .05, the Bonferroni method is
definitely better than the augmented F method for estimating unlimited
simultaneous discrimination intervals based on the immunodiffusion data.

Extremely large values of Y* are not always necessary for one to
be certain that EY*(P)-Q_Y*(P) is less than §Y*(P)-§Y*(P). If £ is
small, n is small,  is large, and P is small then E&*(P)-QY*(P)
may be less than §§*(P)-§&*(P) for all Y* values greater than a
point which is not far from a+bx. For any of the usual choices of
and P levels and normel regression data (n and f not small), however,
it appears that Y* would have to be very far from a+bx before one
could be certain that Cyx(P)-Cyx(P) < Byx(P)-Byx(P).

It should be mentioned that the augmented F method can be expected
to produce short intervals when n is small. In fact, in the limiting
case of n = 3, the augmented F procedure yields shorter intervals
than the Bonferroni method for any choices of ¢, P, Y¥, and any data

2). n-2

(subject to f > ¢* This is because at n = 3, c*2< 57-2;5-— and
-2

c*2< 2Fg{§_2 for every o .

The above comparisons of the lengths of ir+ervals provided by the
Bonferroni and augmented F procedures do not yield explicit results.
Nevertheless, one has the impression that fn most problems where these
methods can be useful, the method based on the Bonferroni inequality
will yield shorter unlimited simultaneous discrimination intervals--

especially when the future Y* values are not expected to be far from a+bx.
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